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We study the energy spectra and wave functions of graphene rings formed from metallic armchair ribbons,
near zero energy, to search for properties which may be identified with “effective broken time-reversal sym-
metry” �EBTRS�. Appropriately chosen corner junctions are shown to impose phase shifts in the wave func-
tions that at low energies have the same effect as effective flux tubes passing near the ribbon surface. Closing
the ribbon into a ring captures this flux and yields properties that may be understood as signatures of EBTRS.
These include a gap in the spectrum around zero energy, which can be removed by the application of real
magnetic flux through the ring. Spectra of five- and seven-sided rings are also examined, and it is shown these
do not have particle-hole symmetry, which may also be understood as a consequence of EBTRS, and is
connected to the curvature induced in the system when such rings are formed. Effects of deviations from the
ideal geometries on the spectra are also examined.
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I. INTRODUCTION

Graphene is one of the most interesting two-dimensional
electron systems to become experimentally available in the
last decade.1 The low-energy physics of this system is domi-
nated by two Dirac points per spin, through which the Fermi
energy passes when the system is nominally undoped.2

Among the many fascinating ideas associated with this sys-
tem is a concept of “effective time-reversal symmetry
breaking.”3 There are two ways in which this occurs. Most
directly, each individual Dirac point of graphene does not
reflect time-reversal symmetry by itself: time reversal in this
system involves interchanging the two valleys. This can have
dramatic consequences. For example, transport in graphene
systems where disorder is ineffective at intervalley scattering
is expected to lead to weak antilocalization, rather than
localization.3–9

A second related effect occurs when a graphene surface
has curvature. The effective long-wavelength theory of the
system in such cases includes gauge fields which can be
understood as effective magnetic fields.3,10,11 These fields are
directed in opposite directions for each valley so that the
system as a whole respects time-reversal invariance. If there
is no source of short-range scattering in the system, such that
intervalley scattering is negligible, the electrons can behave
as if they are moving in a nonuniform magnetic field.3 Such
a viewpoint can be used to infer the single-particle energy
spectrum of a buckeyball10 or in the vicinity of a disclination
in an otherwise perfect graphene lattice.11

Clearly, in the absence of applied magnetic fields and/or
magnetic impurities, and if interactions may be neglected,
the properties of graphene will be time-reversal invariant.
Nevertheless, one may ask what properties can be under-
stood as reflecting effective broken time-reversal symmetry
in an idealized situation. One way to do this is by studying
quantum rings. In an applied magnetic field, a generic one-
dimensional system formed into a ring carries a persistent
current.12 Systems with broken time-reversal symmetry may

also carry spontaneous currents in zero magnetic field, as
may be the case, for example, in Sr2RuO4.13 One can thus
examine the low-energy electronic structure of a graphene
ring to see what properties it may have in common with
systems where time-reversal symmetry is genuinely broken.
This is the subject of our study.

Graphene rings have been studied by several groups. Na-
noribbons closed into short nanotubes have spectra which are
sensitive to the precise boundary termination of the ring and
may behave in a complicated way as the width is varied.14,15

Some studies adopt simplified boundary conditions allowing
use of the Dirac equation such that one may construct spectra
from those of the individual valleys16 or treat many-body
effects.17 Tight-binding studies of flat graphene rings involve
different edge terminations and corner geometries,16,18–20 and
reveal spectra which are sensitive to both, consistent with
previous studies of transmission through polygons and
junctions.21,22 Some experimental studies have recently been
reported,23,24 in which Aharonov-Bohm oscillations in
graphene rings are observed. This demonstrates that suffi-
ciently large phase-coherence lengths may be reached to al-
low quantum-coherence effects to be observed, although cur-
rent sample geometries are not sufficiently controlled to
allow direct comparison with the theoretical studies of ideal-
ized models.

In this work, we will focus on graphene rings constructed
from metallic armchair ribbons. The motivation for this
choice is that it offers clear contrasts from what is expected
if the unique properties of its two valleys and sublattices are
not properly accounted for. Another important motivation for
this choice is that 60° corner junctions may be constructed
for such ribbons which are perfectly transmitting21 in the
lowest transverse subband. Under such circumstances one
may expect a conventional semiconductor to have a state at
zero energy since the transverse confinement energy vanishes
and backscattering at the junctions is absent. For graphene,
we shall see that while there is no backscattering, there is a
phase shift upon passing through such junctions which opens
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a gap around zero energy even in the absence of disorder.
This phase shift is highly analogous to one associated with
the holonomy arising in a “cut-and-paste” procedure used to
create a disclination; in particular it may be modeled by in-
troducing a �singular� gauge potential10,11 which, in the
present case, induces an effective flux contained in ring.
Thus the repulsion of the spectrum away from zero energy in
the absence of any real magnetic flux threading the ring may
be understood as a manifestation of “effective time-reversal
symmetry breaking” �ETRSB�.

Figure 1�a� illustrates a simple geometry, a hexagonal ring
constructed of metallic armchair nanoribbons, and the asso-
ciated energy spectrum as a function of magnetic flux
through the hole of the ring is presented in Fig. 1�b�. As we
shall see, the spectrum for states closest to zero energy may
be understood in detail by accounting for the phase jumps at
the junctions as well as the sixfold symmetry of the system.
Levels with different rotational quantum numbers cross
�without level repulsion� at higher energies in the absence of
perturbations that allow them to admix. �Similar behavior
has been observed previously for related ring
geometries.16,18� Studies16 of zigzag hexagonal rings have
noted that their energy levels may be interpreted in terms of
overlaid spectra for each valley, each of which is asymmetric
with respect to real magnetic flux through the ring, but which
together yield a spectrum which is symmetric with respect to
time reversal. Although states of armchair ribbons do not
have valley index as a good quantum number, we shall see
that there is an analogous quantum number that can be asso-
ciated with the states of the lowest subband, so that in this
case too the spectrum may be understood as overlaid spectra
which individually are not time-reversal symmetric.

Curvature may be introduced by considering rings with
fewer or greater than six sides. Such systems may be related
to hexagonal rings by a cut-and-paste procedure in which
one either cuts out one or more sides of the ring and stitches
together the dangling bonds or cuts open the system at a
corner and inserts one or more extra sides. This is highly
analogous to the procedure by which one creates a disclina-
tion in a perfect graphene sheet.10,11 Since the procedure re-
sults in changing the number of corners, the effective flux
through the ring changes, modifying the spectrum near zero

energy in a way which may be understood in detail. A promi-
nent feature of the spectra of such rings is that they are not
particle-hole symmetric. In general, one may show that a
honeycomb lattice in which closed loops always have an
even number of steps must have a particle-hole symmetric
spectrum. Interestingly, for fivefold and sevenfold rings, any
small loop must have an even number of steps, but loops that
surround the hole of the ring will be odd in number. Thus the
breaking of particle-hole symmetry is associated with a to-
pological property of the ring and is inextricably tied to the
curvature induced in forming pentagons and heptagons from
graphene. Thus the broken particle-hole symmetry in the
spectrum may be understood as another manifestation of ef-
fective broken time-reversal symmetry �EBTRS�.

Clearly, to observe these effects directly requires extreme
control of the lattice beyond the capabilities of current fab-
rication technologies. We briefly examine the effects of dis-
order and perturbations near the corners and edges to see
how disturbing these are to the features described above. We
find that the most profound changes in the spectrum occur
when the corners are modified from their ideal form: in par-
ticular such defects can induce zero energy states which are
absent in a perfect ring geometry. These are localized states
which are insensitive to the flux through the ring and so do
not induce a persistent current. Perturbations near the edges
shift the spectrum and may contribute nearly localized states
but do not in general bring states to zero energy at zero flux
so that the main feature which may be ascribed to EBTRS
remains.

This paper is organized as follows. In Sec. II we discuss
the subband structure of the armchair ribbon and the phase
jump associated with creating a 60° corner in such a ribbon.
Sec. III describes our results for ideal rings and we demon-
strate that they can be understood in great detail from the
results of the previous section. In Sec. IV we examine the
effects of a few deviations from the perfect ring geometry
and finally we conclude with a summary in Sec. V.

II. METALLIC ARMCHAIR NANORIBBONS AND THE
TRANSMITTING CORNER JUNCTION

Figure 2 illustrates two armchair nanoribbons meeting at
60° corner junction. A careful comparison of the wave func-

(b)(a)

FIG. 1. �Color online� Armchair hexagonal ring. �a� Illustration of a ring with inner radius ra, outer radius rb, and flux � passing through
the hole. �b� Energy spectrum near E=0 in units of the hopping-matrix element t, for E�0. For this ring the spectrum is particle-hole
symmetric, and ra=32.5a and rb=38.5a. Integers label the energy levels.
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tions and energy spectra of armchair nanoribbons as found
from numerical tight-binding calculations and from analyti-
cal solutions of the continuum model based on the Dirac
equation demonstrates that these may be brought into quan-
titative agreement, provided one adopts vanishing boundary
conditions for both the A and B sublattices at the edges of the
ribbon.25 In the continuum this means that the boundary con-
dition admixes states from the two valleys around the Dirac
points K and K�. This is in contrast to the situation for zig-
zag edges, for which the wave functions vanish on only one
of the two sublattices, and there is no valley mixing due to
boundary conditions.25 Moreover, in the lowest transverse
subband for a zigzag nanoribbon, the direction of current is
associated with a particular valley. This chirality underlies
proposals to use zigzag graphene nanoribbons as elements in
“valleytronics” applications.26 Because armchair ribbons ad-
mix valleys one may suppose that such physics is irrelevant
to them. However, armchair nanoribbons turn out to support
an analogous chirality, as we now demonstrate.

In the continuum limit, the positive-energy wave func-
tions of an armchair nanoribbon may be written in the form

�px,py
�x,y� =

1
�2W�� 1

px + ipy

p
�eiK·reipxx

− � 1

px + ipy

p
�eiK�·re−ipxx�eipyy , �1�

where the upper �lower� entry represents the amplitude on

the A �B� sublattice, W is the ribbon width, K= �− 4�
3a ,0�,

K�= � 4�
3a ,0�, and a is the lattice constant. The value of px

must be chosen such that the total amplitude at the edges of
the ribbons vanishes so that px→pn comes in quantized
values.25 For metallic ribbons, the lowest subband satisfies
pn=0=0. These wave functions have energy �=vF�p�, where
vF is the speed of electrons near the Dirac points. Negative-
energy wave functions are related to those of Eq. �1� by
changing 1→−1 in the A sublattice amplitudes.

The metallic case �pn=0� allows an interesting simplifica-
tion of the transverse wave function, yielding

�0,py
�x,y� =

1
�2W

	
 1

isgn�py�
�

K

− 
 1

isgn�py�
�

K�
�eipyy .

�2�

The subscripts K ,K� are introduced in the above expression
to denote the fact that the spinors provide amplitudes for
each of the two valleys. Writing the amplitudes for the wave
function in vector form, �pn,py

= ��A,K� ,�B,K� ,�A,K�� ,

�B,K���†, the pn=0 wave function is an eigenstate of the
matrix

T =�
0 0 0 i

0 0 − i 0

0 i 0 0

− i 0 0 0
� . �3�

The matrix T interchanges the amplitudes between both
sublattice and valley, and multiplies by a phase �i.27 This
particular matrix may be shown to commute with the Hamil-
tonian in the continuum limit so that it represents a symme-
try of graphene at low energies. Moreover, the boundary con-
dition for armchair edges does not violate this symmetry.
Thus, any eigenstate of a graphene armchair nanoribbon may
be expressed as an eigenstate of T. In general this requires
admixing states of different signs of pn. However for the
special case of pn=0, one finds

T�0,py
= sgn���sgn�py��0,py

. �4�

Thus, for metallic nanoribbons the eigenvalue of T in the
lowest subband �pn=0� is tied to the direction of current
sgn�py�, in a way that is highly analogous to the connection
between current direction and valley index for zigzag nano-

FIG. 3. �Color online� Geometry for flux tubes, arranged to
produce the effects of the phase factor created by the corner junc-
tion. Effective flux above and below the plane of the ribbon run in
opposite directions.
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FIG. 2. Geometry for an armchair nanoribbon corner junction.
Note that atoms from both sublattices appear with equal frequency
at the edge of each ribbon, implying vanishing boundary conditions
for both. Transverse modes of the ribbons may be matched at the
junction by equating wave functions on open and closed circles, and
on triangles. The integers spanning the width of the incoming and
outgoing ribbons correspond to the index � in Eq. �7�.
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ribbons, with the eigenvalue of T playing the role of valley
index.

For our present study of armchair rings, the corner junc-
tions as illustrated in Fig. 2 are used. Such junctions were
shown previously to support perfect transmission.21 The
transmission amplitude may be computed by matching wave
functions and currents for the two ribbons on the joining
surface. Current matching is in general inconvenient because
it involves products of wave functions. This requirement

may be simplified for the lowest subband because the wave
functions vanish on the open circles in Fig. 2. Thus one only
need match the currents on the bonds connecting the closed
circles to the triangles. This may be accomplished straight-
forwardly by matching the wave functions on the triangles as
well. For low energies, in which we focus on the lowest
transverse subband and take the py→0 limit, referring to the
labeling in Fig. 2, the resulting matching conditions are21

�0,0
�A��x = 1,y� = �0,0

�B���x� = 1�,y�� �0,0
�B��x = 2,y� = �0,0

�A���x� = 1�,y�� �0,0
�B��x = 3,y� = �0,0

�A���x� = 3�,y��
�0,0

�A��x = 4,y� = �0,0
�B���x� = 4�,y�� �0,0

�B��x = 5,y� = �0,0
�A���x� = 4�,y�� �0,0

�B��x = 6,y� = �0,0
�A���x� = 6�,y��

�0,0
�A��x = 7,y� = �0,0

�B���x� = 7�,y�� �0,0
�B��x = 8,y� = �0,0

�A���x� = 7�,y�� �0,0
�B��x = 9,y� = �0,0

�A���x� = 9�,y��
· · ·

· · ·

· · ·

. �5�

The transmission amplitude between states of the ribbons
can be computed in the single mode approximation �Refs. 21
and 28� by computing the overlaps M0,0�py� of the wave
functions on the joining surface

M0,0�py�  � d��0,py

�1� �x���,y�����0,py

�2���x���,y���� , �6�

where �0,py

�1� is the wave function to the left of the junction,
�0,py

�2� is the wave function to the right of the junction, and �

parameterizes the joining surface. Note that in the limit py

→0, there is no actual y dependence in �0,0
����x ,y�. From Fig.

2 one may see that the positions denoted as x� ��=�� �� de-
marcate increments of length a /2. The meaning of the for-
mal expression �Eq. �6��, using Eq. �1�, then takes the form
for py �0, ��0

M0,0�py → 0� = �
�
	i
exp�− i

4�

3
�3

2
� +

1

2
�� − exp�i

4�

3
�3

2
� +

1

2
���
exp�i

4�

3
�3

2
� +

1

2
�� − exp�− i

4�

3
�3

2
� +

1

2
���

− i
exp�− i
4�

3
�3

2
� + 1�� − exp�i

4�

3
�3

2
� + 1���
exp�i

4�

3
�3

2
� +

1

2
�� − exp�− i

4�

3
�3

2
� +

1

2
���

− i
exp�− i
4�

3
�3

2
� +

3

2
�� − exp�i

4�

3
�3

2
� +

3

2
���
exp�i

4�

3
�3

2
� +

3

2
�� − exp�− i

4�

3
�3

2
� +

3

2
�����

�
�
	�exp
i

4�

3
�3

2
� +

1

2
�� − exp
− i

4�

3
�3

2
� +

1

2
���2

+ �exp
i
4�

3
�3

2
� + 1�� − exp
i

4�

3
�3

2
� + 1���2

+ �exp
i
4�

3
�3

2
� +

3

2
�� − exp
− i

4�

3
�3

2
� +

3

2
���2� . �7�
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The denominator in Eq. �7� comes from normalizing the
wave functions. Equation �7� yields M0,0�py→0�= i; more
generally, one may verify that M0,0�py→0�= i for py��0,
and M0,0�py→0�=−i for py�	0. The result confirms the
unit transmission found previously for these junctions21 and
also implies a remarkable property: the wave functions
should jump by a factor of �i as one passes through a junc-
tion with the sign determined by the eigenvalue of the T
operator defined above.

This phase shift can also be viewed from the continuum
perspective. Consider a long metallic armchair nanoribbon
segment with its front and back ends identified to form a
cylinder, effectively a short, fat nanotube. We may simulate
the phase shift associated with the junction shown in Fig. 2
by adding a gauge field. Our Hamiltonian has the form �

=1�

H�p� = vF�
0 − px + ipy 0 0

− px − ipy 0 0 0

0 0 0 px + ipy

0 0 px − ipy 0
� ,

�8�

where px�y�=
1
i �x�y�. Writing �pn,py

=ei��pn,py
� , we can rewrite

the Dirac equation for the wave functions in the form H�p
−A��pn,py

� =��pn,py
� , with A=�y�ŷ and �= �

2 T�y�, where
the junction between ribbons is located at y=0. In this rep-
resentation, �pn,py

� is continuous across the junction, and the

phase jump is fully implemented by the ei� factor.
The presence of the gauge field can be interpreted as be-

ing due to a pair of solenoids carrying magnetic flux in op-
posite directions, one above the plane of the ribbon, the other
below. In this way, one can understand the problem of
n-sided rings constructed from metallic armchair ribbons and
corner junctions such as shown in Fig. 2 as being the same
�near zero energy� as the problem of a ribbon closed into a
cylinder �i.e., a short nanotube�, with 2n flux tubes, half
threaded through in one direction and half just outside it in
the other direction, as illustrated in Fig. 3 for a single such
pair. In this way the system has properties illustrating
EBTRS. Just as in other examples of this effect in
graphene,10,11 real time-reversal symmetry is preserved for
the system, in this case because the effective flux runs in
opposite directions for different eigenvalues of the operator
T. As we shall see in detail below, the low-energy spectra of
such rings as found from solutions of the tight-binding model
behave precisely as if these phase jumps are present. The
resulting spectra present properties which may be understood
as signaling the EBTRS in graphene.

III. NUMERICAL RESULTS

The simplest ring system one can study using metallic
armchair ribbons and the 60° corner junctions discussed
above is the hexagonal ring, as illustrated in Fig. 1�a�. The
fact that the junctions are perfectly transmitting in the lowest
subband might lead one to think that the low-energy spec-
trum is the same as that of a metallic armchair ribbon closed
into a cylinder �i.e., a very short carbon nanotube.� If this
were the case, one would expect states at zero energy when
no external magnetic flux threads the ring. Our discussion
above however indicates that one needs to include the effec-
tive flux passing through the ring to understand the spectrum.

Figure 1�b� is the spectrum obtained from computing the
eigenvalues of the tight-binding model near zero energy, as a
function of flux � through the ring. Note in these calcula-
tions we include only the phase factors in the hopping-matrix
elements due a solenoid passing through the hole of ring;
magnetic flux through the individual plaquettes of the hon-
eycomb lattice is not included. In general the spectrum in
this case is perfectly particle-hole symmetric so only
positive-energy states are displayed.

The form of the spectrum is highly reminiscent of what
has been seen previously in hexagonal rings with zigzag
edges.16 In particular it takes the form of two sets of spectra,
each with broken time-reversal symmetry such that the ener-
gies have a particular sign of slope near �=0. The spectra

FIG. 4. Hexagonal ring illustrating site labels for examination of
wave function. Black dots indicate sites on A sublattice and gray
dots are on B sublattice. The actual ring used in calculations has
ra=32.5a and rb=38.5a, with a the lattice constant of the underly-
ing triangular lattice.

(b)(a) (c) (d)

FIG. 5. �Color online� Wave functions at zero flux � for the four lowest eigenstates n=1,2 ,3 ,4 illustrated in Fig. 1�b�.
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are effectively time reverses of one another so that the spec-
trum as a whole has time-reversal symmetry; in particular the
spectrum evolves in the same way whether positive or nega-
tive flux is threaded through the hole. In the case of zigzag
ribbons the two sets of spectra are associated with the two
valleys. In the present case, they are associated with the two
eigenvalues of the matrix T. Note that the crossing of the
energy states through zero at �= ��0 /2 may be understood
as resulting from the sum of the effective fluxes due to the
corner junctions and that of the real field summing to an
integral number of flux quanta.

The phase jumps associated with the corners may be dem-
onstrated explicitly by a careful examination of wave func-
tions. Figure 4 labels a set of sites around the ring and Fig. 5
illustrates the wave functions on one of the sublattices for the
four lowest positive-energy levels at �=0. The jumps in
amplitude associated with passing through the corners of the
junctions are quite apparent. Moreover, the amplitudes in the
sides of the ring reflect the eipyy phase factor in Eq. �1� very
accurately, provided one recognizes that diagonalization of
the tight-binding Hamiltonian results in real eigenvectors, so
that our wave functions are actually linear combinations of
states with positive and negative values of py. To see this, we
fit the wave functions to functions of the form ��y�
=A sin�pyy+�0�, where A and �0 are constants but inserting
phase jumps of �

�
2 at the discontinuities in the wave func-

tions. Typical results are illustrated in Fig. 6. One may see
the excellent fit to wave functions with well-defined py. We
have confirmed that similar phase jumps and fitted wave
functions are produced at least to the ninth energy level.

The results also directly support the expected sign of the
phase jump, associated with the eigenvalue of T. To see this,
we recognize that the wave functions are linear combinations
of plane waves in y of equal and opposite py, such that one
obtains real eigenvectors. The values of py are determined by
requiring for the hexagon that e�ipyL+i�/2��6=1, where L is the
length of one of the hexagon sides, and py �0. This require-
ment very accurately produces the values of py used in fitting
to sine functions, such as in Fig. 6, as well as the energies
�=vF�py� �see Table I�. The actual wave functions are linear
combinations of e��ipyy+i�s/2�, with s an integer s=0, . . . ,5
labeling which leg of the hexagon y is on; thus we see the

phase jump must have different signs for the two signs of py.
Finally, we have examined the states with �	0 and indeed
find a change in sign for the � /2 phase jumps relative to
wave functions with the same py and ��0.

The presence of six � /2 phase jumps �due to the six cor-
ners of the hexagon� implies that py =0 is not an allowed
momentum for the electron wave function in this type of
ring. Thus there is no allowed zero energy state, as would be
expected for a metallic ribbon closed into an annulus, and its
absence is imposed by the presence of phase factors that are
very suggestive of effective magnetic flux penetrating the
ring, as discussed above. The gap in the spectrum around �
=0 may be interpreted as one signature of EBTRS.

Rings with numbers of sides differing from six may also
be considered, such as those illustrated in Fig. 7. Because the
number of corners in these structures is different than that of
hexagons, the effective flux through such rings will be dif-
ferent, leading to extra factors of �i which must be included
in determining the wave functions. These may be examined
by solving the corresponding tight-binding models, and one
finds that the spectra and wave functions may be fully un-
derstood in the same way as described above for hexagonal
rings. Examples of spectra are illustrated in Fig. 8. At �=0,
the energy levels precisely obey �= �vF�py�, with py chosen
to be consistent with the total phase jump associated with the
number of corners. Fits analogous to those shown in Fig. 6
may be made with equal success.

(b)(a)

(a) n=1; A sublattice (b) n=3; A sublattice

FIG. 6. �Color online� Wave functions at zero flux � for the n=1,3 eigenstates with phase jumps added �see text� and fitted to sine
functions.

TABLE I. Table showing values of py, �0, and m in formula of
form 6�pyL+�0�=2�m used in matching numerically generated
wave functions with forms expected from wave-function continuity
around a ring �see text�.

Energy level pyL �0 m

1 � /6 � /2 2

2 −� /6 −� /2 −2

3 � /2 � /2 3

4 −� /2 −� /2 −3

5 5� /6 � /2 4

6 −5� /6 −� /2 −4
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The most prominent difference between the spectra dis-
played in Fig. 8 and those of hexagonal rings is the obvious
lack of particle-hole symmetry. In the continuum limit,
particle-hole conjugates are related by changing the relative
sign of the amplitudes on different sublattices �equivalent to
multiplying the wave function by the Pauli matrix �z for
each valley� and the resulting wave function has the same
value of py but an energy of opposite sign relative to that of
the original wave function. For geometries containing the
junctions studied in this work, however, there is a further
effect: the phase jump for a wave function with a given ei-
genvalue of T changes sign �Eq. �4�.� For even numbers of
corners this has no net effect �e.g., ��i�6=−1� but for odd
numbers this affects the wave-function continuity condition
such that py in general cannot take the same values for posi-
tive and negative energies. In terms of effective flux through
the ring, this is a reflection of the fact that the associated
vector potential is a matrix rather than a scalar quantity, al-
lowing the system to have different values for the effective
flux for positive and negative energies. Moreover, for a given
eigenvalue of T, the effective flux through a six-sided ring is
effectively ��0 /2, while for five- or seven-sided rings it is
��0 /4. This effective flux can be canceled by adding real
magnetic flux through the ring, bringing some states to zero
energy, but the amount of flux required depends on the num-
ber of sides �cf. Figs. 1�b� and 8.�

Thus, the absence of particle-hole symmetry in the spec-
trum may be understood as a unique effect of the types of

gauge fields which can occur in graphene. As in the case of
disclination defects,10,11 this effect is intimately connected to
the presence of curvature in the system: one may create pen-
tagons and heptagons from hexagonal rings with cut-and-
paste procedures that leave the local threefold coordination
of the bonding intact, but in doing so curvature is necessarily
introduced and an integral number of corners must be added
or subtracted from the system. When this number is odd,
particle-hole symmetry breaking will necessarily be present
in the spectrum. Thus, this symmetry breaking is intimately
connected to the introduction of curvature associated with
this type of topological defect.

Finally, it is interesting to consider how particle-hole sym-
metry may be broken from the perspective of the tight-
binding model. It is easy to show that graphene sheets with
simple nearest-neighbor hopping of uniform magnitude will
support particle-hole symmetry if all paths beginning and
ending at the same point have an even number of steps.29

Locally this is the case for all the structures considered in
this paper. However, for rings with an odd number of sides,
paths that enclose the hole of the ring will have an odd num-
ber of steps, leading to the breaking of particle-hole symme-
try. The fact that one must examine paths that enclose the
hole to uncover the symmetry breaking is consistent with the
idea that the effect is related to flux through the hole in the
gauge-field description.

IV. DISTORTED GEOMETRIES

In this work we have focused on ideal graphene rings in
order to focus on signatures of EBTRS in their spectra. How-
ever, currently available fabrication techniques do not allow
the creation of such perfect rings, and an obvious question is
how robust the features discussed above might be with re-
spect to deviations from the ideal structure. In this section we
examine this question in a few simple cases.

The graphene ribbon edges considered in idealized mod-
els such as considered here have dangling bonds since atoms
at the very edge only have two nearest neighbors. In practice
these bonds are often passivated with hydrogen or oxygen
and moreover relax to slightly different bond lengths than in
the bulk so that the gapless spectrum of ideal metallic rib-

(b)(a)

FIG. 7. Examples of �a� five-sided �pentagon� and �b� seven-
sided �heptagon� graphene rings with 60° corners along with points
used for analyzing wave functions. Note such rings necessarily have
curvature if their bond lengths are undistorted.

(b)(a)

FIG. 8. �Color online� Energy spectra as a function of flux for �a� pentagonal ring and �b� heptagonal ring. Ribbons used in constructing
the polygon edges are identical to those used for hexagonal rings with ra=32.5a and rb=38.5a.
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bons develops a small gap.30 This can be modeled30 by
changing the hopping-matrix element along the edge in the
very last row, as illustrated in Fig. 9. One may see that the
major effect of this is to open a large gap around energy E
=0.04t, where for the ideal ribbon this is only a small anti-
crossing. Interestingly, the gap to the first state at �=0 is
only very slightly suppressed so that this basic effect is un-
changed by the edge modification. Moreover, at �=�0 /2,
the levels still cross zero energy, behaving exactly as if the
real flux cancels the effective flux associated with the cor-
ners. Thus we find that the qualitative effects of EBTRS are
robust against this edge modification.

More disruptive effects occur when the edges or corners
become disordered. Figure 10 illustrates the effect of remov-
ing a single pair of sites on one edge of the system. One may
see in the spectrum that all the crossings present for the
perfect system now become anticrossings. This is easily un-
derstood: in the case of the ideal system there is perfect
sixfold symmetry and each eigenstate carries a rotational
quantum number m. The perfect symmetry implies that when
states with different values of m approach one another as a
function of �, they cannot admix, and the states will cross in
energy. Once the symmetry has been broken, all states are
generically admixed, and the gap openings seen in Fig. 10
follow naturally. In spite of these gaps, we see the basic
structure of the large gap around zero energy which closes as
� approaches �0 /2 is maintained.

If a whole row of sites is removed, as in Fig. 11, the
spectrum loses its essential features, and a series of states
near zero energy that vary little with � are apparent. This
indicates that the states have been localized, and since they
do not surround the hole of the ring they are insensitive to
the flux through it. This effect may be understood if one
notes that the upper armchair ribbon is one row narrower
than the other ribbons and hence is not conducting: such a
ribbon in isolation has a substantial gap near zero energy.25

Thus we do not expect the lowest-energy states to penetrate
into the upper arm of the ring and the various effects due to
any effective flux quanta associated with the corners will be
suppressed.

Perhaps the most surprising effect occurs when a single
site is removed from a corner, as illustrated in Fig. 12. In this
case one finds a nondispersive state precisely at zero energy.
This localized state appears to be associated with the three-
point zigzag edge at the corner that results from removing
this site; analogous localized states appear in other defect
structures as well when they include such three-point
geometries.31 In this case the low-energy structure associated
with the other corner junctions is nearly absent, suggesting
the defective corner junction has become largely reflective.
This demonstrates that the geometry of the corner junctions
plays a crucial role in the results associated with EBTRS in
graphene rings: a defective junction will generically admix
states with different T eigenvalues and moreover can effec-

(b)(a)

FIG. 9. �Color online� Model of a hexagonal ring with passivated edges and associated energy spectrum. �a� Bold bonds have hopping-
matrix elements given by 0.9t. �b� Energy spectrum as function of �. ra=32.5a and rb=38.5a.

(b)(a)

FIG. 10. �Color online� Hexagonal ring with a single bond removed at the edge, ra=5.5a and rb=11.5a. �a� Illustration of a defective
bonding structure for small size system. Bold bond and associated sites on top edge have been removed. �b� Energy spectrum as function of
�.
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tively block transmission at low energies so that effects as-
sociated with the noncompactness of the geometry are diffi-
cult to see or are absent at low energies. The sensitivity of
transmission to the precise geometry at a corner junction can
also be seen in the conductance through such junctions.21

Similar sensitivity to precise geometries has been observed
in conductance through graphene polygons and quantum
dots.21,22

We conclude this section with two remarks. One way in
which the energy spectrum of a quantum ring is probed is
through the persistent currents it supports in a real magnetic
field, J=−c dE

d� . Such currents create magnetization which
may be detected either for a large enough ring or for a col-
lection of identical rings. Since localized states have zero or
very small � dE

d� �, their presence will not be apparent in experi-
ments that probe the system in this way. However they
should be visible in tunneling experiments. Second, in ex-
periments which probe the spectrum through the magnetiza-
tion of a collection of rings, inevitably there will be varia-
tions in the precise structure of each ring, so that few if any
will have the ideal spectra of the last section. However one
may speculate that some of the features may be reflected in
the total magnetization as a function of Fermi energy since
this involves an average over many different disorder real-
izations around the ideal ring structure. We leave this possi-
bility for future research.

V. SUMMARY

In this paper we have studied the states of graphene rings
formed from metallic armchair ribbons with 60° corner junc-
tions which are perfectly transmitting at low energies. We
showed that states of the ribbons have a quantum number
that is the eigenvalue of a symmetry operator T and states
with the same value of this near zero energy are connected
with magnitude one through these particular corner junc-
tions. However the amplitudes support a phase jump as one
passes through the junctions, and these phase jumps can be
described in terms of a gauge field due to effective fluxes
passing just above and below a ribbon. When such a ribbon
is closed into a ring, there is an effective flux contained such
that py, the momentum along the ribbon direction, cannot
vanish if the wave function is to meet appropriate boundary
conditions. As a result there are no states of a six-sided ring
at zero energy in the absence of an external magnetic field.
States can be driven to zero energy by application of such a
field, which effectively cancels the flux associated with the
junctions. This behavior may be understood as a manifesta-
tion of EBTRS.

Fivefold and sevenfold rings enclose different total effec-
tive fluxes, shifting the spectra such that particle-hole sym-
metry is broken. This behavior is another signal of EBTRS
and moreover is intimately connected with the curvature in-
duced in the rings when these systems are formed. Analo-

(b)(a)

FIG. 11. �Color online� Hexagonal ring with a row removed at the edge, ra=5.5a, and rb=11.5a. �a� Illustration of a defective bonding
structure for small size system. Bold bonds and associated sites of top edge have been removed. �b� Energy spectrum as function of �.

(b)(a)

FIG. 12. �Color online� Hexagonal ring with a site removed at one corner, ra=5.5a, and rb=11.5a. �a� Illustration of a defective bonding
structure for small size system. Bold bonds and associated sites have been removed. �b� Energy spectrum as function of �.
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gous descriptions have been applied to graphene sheets with
disclinations10,11 although the breaking of particle-hole sym-
metry in the spectrum is not so apparent in those cases as in
the present one.

Finally, we examined the effects of several types of varia-
tions from the ideal ring structure on the spectra. A change
near the edges to model relaxation and passivation was found
to only have a small quantitative effect at the lowest ener-
gies. Removal of a small number of atoms from one edge
opened small gaps at points where anticrossing occurs in the
ideal case but removing a whole row rendered one side of the
ring nonconducting, effectively removing the signature of
EBTRS. Removing a single atom from a corner introduced a
zero-energy state and greatly reduced the sensitivity of the

system near zero energy to the flux through the ring. We
conclude from this that well-formed corner junctions of the
type described in this work are a necessary ingredient to see
effects attributable to EBTRS.
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